Architecture

Cohort 1 Group 1

Charlie Piper, Chris Oulton, Ella Daramola, Dillon Anthony, Kevin Thomas,
Shirin Sitara Alok Kumar, Tom Haslam

Class Responsibility Collaborator (CRC) Cards

We need to determine what classes we need for the game, so we made CRC cards to help
figure out what classes are needed. Each card shows what actions the class must be able to

perform and what other classes that class can interact with.

Class: HeslingtonHustle

Responsibility:

- Creates an instance of each of the GameScreens
class and is responsible for navigating between the
screens

- Creates an instance of the AppPreferences class

Collaboration:
- GameScreen
- AppPreferences

Class: GameScreen

Responsibility:
- Responsible for all the screens such as character
selection and the ending screen
- Creates an instance of the Play class

Collaboration:
- HeslingtonHustle
- Play
- Player
- Activity

Class: Play

Responsibility:
- Represents the screen where main gameplay takes
place
- Allow for transitions between maps

Collaboration:
- GameScreen
- Player
- Activity
- GameStats

Class: Player

Responsibility:
- Represents the player character in the game
- Allows movement around the map

Collaboration:
- Play
- Activity

Class: Activity

Responsibility:
- Knows the amount of time taken for each activity
- Knows the score added for each activity
- Has the various types of activities that can be
performed

Collaboration:
- GameScreen
- Play
- Player
- GameStats

Class: GameStats

Responsibility:
- Stores and updates all the stats such as time,
energy, score, and day

Collaboration:
- Play
- Activity

Class: AppPreferences

Responsibility: Collaboration:
- Manages the preferences of the game such volume - HeslingtonHustle

The CRC cards and our original class diagram [1] were made after the supervisor meeting
and were created with the user and system requirements in mind and how each one that
was set out would be achieved, this allowed us to get a broad idea of how the system should
work.

Once development began and our game began to evolve overtime we made a few
adjustments to our classes set out before in the CRC cards and the original class diagram,
our biggest adjustment being converting the GameScreen classes into multiple separate
classes each with a singular responsibility, this is because it allows for code that is easier to
change, test, extend, and understand. An example of one of the new screen classes that
were added is the EndScreen class which is responsible for showing the user the score they
got at the end of the game. The new class diagram can be seen below.

Class Diagram
After creating classes, determining their roles and how they interact with other classes we

created a UML class diagram using Plantuml to show the classes that will be included in the
implementation, the relationships between the classes, and key attributes and methods that
each class has.

HeslingtonHustle
The HeslingtonHustle class is responsible for managing all the screens, it switches between
the screens using the changeScreen() method.

CharacterScreen

The CharacterScreen class is the class that represents the screen the player of the game
will use to select the character sprite that they want to play using the show() method. This
meets the UR_CUSTOMISATION and FR_CHARACTER_SELECTION requirements.

EndScreen

The EndScreen class is the class that represents the screen the player will receive at the
end of the game, it will display the final score they got using the show() method. This meets
the UR_SCORE, FR_GAME_END, and FR_GAME_END_STATS requirements.

LoadingScreen
The LoadingScreen class is the class that represents the screen that is used while loading
resources or preparing for the main menu.

MainScreen

The MainScreen class is the class that represents the main screen of the game, it handles
all the user interactions using the MainScreen() method and creates an instance of the Play
class using the show() method. This meets the FR_GAME_START and FR_GAME_QUIT
requirements.

MenuScreen

The MenuScreen class is the class that represents the main menu screen used in the game,
it provides the option for starting a new game, accessing preferences, and exiting the game.
It does this through the show() method.

PreferencesScreen

The PreferencesScreen class is the class that represents the preferences menu section of
the game, it allows the player to adjust game settings using the show() method. This meets
the UR_PREFERENCES requirement.

Play

The Play class is used show the gameplay, it is responsible for loading the current map you
are on using the loadMap() method, swapping you between maps using changeMap(), and
setting the initial player position on the map when the map is first rendered using the
setPlayerPosition() method.

Player

The Player class is the class the player of the game will use while he plays the game, he is
controlled and moved using the WASD and the arrow keys this is done through the keyUp()
and keyDown() methods, he will be able to interact with the map through special tile blocks
that will allow him to perform activities such as sleeping and studying. This meets the
UR_MOVEMENT, UR_CONTROLS, FR_CHARACTER_MOVEMENT,
FR_CHARACTER_COLLISION and FR_CHARACTER_INTERACTION requirements.

Activity

The Activity class is the class that the player will interact with to perform activities around the
map they interact via the completeActivity() method, there are four activities that the player
can perform: study, relax, eat, and sleep each activity will progress time and expend energy
by a different amount. It tracks the number of activities completed using the
countCompletedActivities() method. This meets the UR_OBJECTIVE and UR_CHOICES
requirements.

GameStats

The GameStats class is the class that stores all the game counters such as energy, score,
day, and time. Each score is also updated in the class each time an activity is completed.
This meets the FR_STATS, FR_STATS_UPDATE, FR_STATS_RESET and

FR_STATS SHOW requirements.

AppPreferences
The AppPreferences call will allow the players of the game to control the volume of the
sounds he hears in the game such as music and other sound effects. This meets the

UR_PREFENCES requirement.

© CharacterScreen

parent
1

oparent: HeslingtonHustle
oshow(): void

parent
1

b

1 characterScreen
1

(© HeslingtonHustle

oloadingScreen: LoadingScreen
o preferencesScreen: PreferencesScreen

omenuScreen: MenuScreen
omainscreen: MainScreen
oendScreen: EndScreen
opreferences: AppPreferences

ndscreen|
1

(©) Endscreen

(©) AppPreferences

feferences
1

loadingScre
1

ocharacterscreen: Characterscreen

parent
1

ocreate(): void
o changeScreen(int): void

11ljparent 1 parent
1 mainscreen L

1t 1

o parent: HeslingtonHustle

o show(): void

osetSoundEffectsEnabled(boolean): void
osetMusicEnabled(boolean): void
osetMusicVolume(float): void
osetSoundvolume(float): void

(©) LoadingScreen

(© Mainscreen

parent
1

nuScreen
1

preferencesScreen
1

(©) Menuscreen

(©) preferencesscreen

oparent: HeslingtonHustle

o parent: HeslingtonHustle

oparent: HeslingtonHustle

o parent: HeslingtonHustle

oplay: Play

oshow(): void

oshow(): void

oshow(): void

oshow(): void

£

play
1

© Play

oselectedCharacter: String

oloadMap(String): void
achangeMap(String): void
osetPlayerPosition(): void

1
playe
1

(©) Player

ospeed: float
ovelocity: Vector2

oget

oupdate(float): void

o keyDown(int): boolean

o keyUp(int): boolean
ogetTransition(float, float): void

Activity(float, float): void

(© Activity

otimeNeeded: LocalTime
oenergyNeeded: int
oreward: int

ocreateActivities(): void
ocompleteActivity(String): void
ocountCompletedActivities(): Map<String, Integer>

(©) Gamestats

oenergy: int
oday: int

oscore: int
otime: LocalTime

oincreaseTime(LocalTime): void
o decreaseEnergy(int): void
onewDay(): void
oincreaseScore(int): void

Sequence Diagram
A sequence diagram was also created to show the expected interactions between the

objects in the system during runtime. It was created using Plantuml and shows the expected
flow between the user doing an action and the effect it has on the game; these sequences
should achieve the goals that were set out in the user and system requirements section.

‘User Input Player | | Play Activlty‘ GameStats AppPreferences|

Press the movement keys

Moves Character

Press the movement key at a transition point

The map changes to ancther location

Press the interact key at an activity point

Perform the interaction

Progress time and increase counter

Press the interact key at the end day activity point

Perform the interaction

Progress time to the next day

Press the movement keys at a collision point

The character is blocked from moving further

Press the settings key

Open the preferences menu

‘User Input ‘Player Play A:tivn:y‘ GameStats | | AppPreferences

User
The user can move around the map using the movement keys (WASD or arrows), and can
interact with the map at the activity points.

Input
Depending on the input from the user a different method will be called, for example moving
the player, transitioning the maps, and opening the preferences menu.

Activities

Every time an activity is completed the game should be progressed in this case this will be
increasing the time and counter by a varying amount depending on what activity was
completed.

Requirements completed

- The ‘Press the movement keys’ sequence fulfils the UR_MOVEMENT,
UR_CONTROLS, and FR_CHARACTER_MOVEMENT requirements.

- The ‘Press the movement key at a transition point’ sequence fulfils the
UR_MOVEMENT, FR_CHARACTER_INTERACTION, and
FR_CHARACTER_MOVEMENT requirements.

- The ‘Press the interact key at an activity point’ sequence fulfils the UR_CHOICES
and FR_CHARACTER _INTERACTION requirements.

- The ‘Press the movement key at a collision point’ sequence fulfils the
UR_MOVEMENT, FR_CHARACTER_INTERACTION, and
FR_CHARACTER_MOVEMENT requirements.

- The ‘Press the settings key’ sequence fulfils the UR_PREFERENCES requirement.

System Architecture
We followed the Component Entity Style of system architecture for the development of our

game [2]. This style is an extension to OOP (object-oriented programming) which is a
concept the team was already familiar with. We used 3 main software tools:- IntelliJ, LibGDX
and Tiled.

Based on the requirements - user and system, the main nouns/noun phrases were used to
build entities such as - characters, maps and status bars. Components are data types
consisting of a unique behaviour assigned to an entity. They are reusable modules that
programmers attach to the entities, providing behaviour, functionality, and appearance,
forming an entity [3]. These are then implemented by giving them logical systems to adhere
to.

A simple way to showcase the architecture is with an example:

& N

ENTITY COMPONENT SYSTEMS

Character PositionTile CollidesBottom()
CollidesTop()

CollidesRight()
CollidesLeft()

b _4 \ _4 b 4

An entity - Player has multiple components such as the position of the character, the
appearance, speed and velocity of the character, etc. Different components of an entity are
implemented using different systems, for example, the movements are controlled by the -
KeyDown(), and KeyUp() functions, and the collision and transition tracking system is
implemented using functions such as - isCellBlocked(), isCellTransition(), getTransition(),
etc.

In this manner, a sprite from LibGDX gets moved around maps made using Tiled by rules
written in Java (IntelliJ).

References:

[1]: hitps://charliepiper.github.io/documents Figure 4

[2] : Fundamentals of Software Architecture by Mark Richards and Neal Ford (O’Reilly)
Copyright 2020 Mark Richards, Neal Ford, 978-1-492-04345-4.

https://ebookcentral.proquest.com/lib/york-ebooks/detail.action?pg-origsite=primo&docID=60
29037

[3] : https://www.simplilearn.com/entity-component-system-introductory-quide-article

https://charliepiper.github.io/documents
https://www.simplilearn.com/entity-component-system-introductory-guide-article

